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ABSTRACT 
 
Collaboration is often an afterthought to a project or 
development. In this paper we describe and analyze our 
experiences in developing collaborative technologies, 
most often involving the sharing of visual information. 
We have often developed these in a context that required 
us to retrofit existing analysis applications with 
collaboration capabilities. This approach, though 
fruitful, is time-consuming, expensive, and often difficult 
to re-apply elsewhere – it is just hard to change an 
existing application.  One way to make such an effort 
easier is to package the collaborative components as a 
kit that can be leveraged on a case-by-case basis. The 
fixed interface provided by a well-designed toolkit eases 
the integration process by providing an unchanging and 
familiar set of components to deploy. Better still, we 
find, are approaches that require no modification of 
applications while providing rich and powerful means 
for sharing information with collaborators. We discuss 
three separate and illuminating examples that meet this 
criterion in different ways: (1) building the collaborative 
potential into the underlying abstractions on which 
operating systems are built, (2) building tools that live 
side-by-side with any application in the context provided 
by the operating system, or by (3) building information 
tools that use collaborative modalities to better integrate 
with our workflow.  These are probably not the only 
options, but they all derive from an approach where 
collaboration is considered early in the design process 
and therefore manifests itself deep in the computing 
infrastructure giving it a wider cast. 
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1. INTRODUCTION 
 
The 2007 report on Visualization and Knowledge 
Discovery [1] concludes that basic research is needed in 
several areas to enable continued scientific discovery, 

given the current trajectories of data produced by 
simulations and collected from sensors. Interaction and 
collaboration are at the top of the list:  
 

A new generation of visualization and data 
exploration tools are needed to significantly 
enhance interaction and collaboration between 
these distributed scientists, their data, and their 
computational environments. 

 
What is interesting is that this statement clearly 
acknowledges three components of a successful 
collaboration: scientists, data, and the environment itself. 
Building on a long history of creating collaborative 
environments to support science, we discuss in this paper 
the challenges associated with taking an existing tool and 
making it “collaborative.” We present the various 
methods we have used, from leveraging tools that make 
an application appear to be collaborative, to adding 
infrastructure in an ad hoc manner to enable collaborative 
use, to building on a toolkit or framework that supports 
collaboration. We start with a brief background on the 
collaborative spaces we have explored. We then relate our 
experiences in retrofitting tools to make them 
collaborative. We discuss a few environments and tools 
that have collaboration at their very core. From our 
experiences we suggest the next steps in supporting 
effective collaboration. 
 
2. BACKGROUND 
 
Starting in 1994 we began to experiment with the 
construction of collaborative virtual environments. Our 
early work progressed from the first CAVE-to-CAVE 
application, to the development of the CAVEcomm 
library [2] and the advanced ManyWorlds framework [3], 
and finally to a desktop system called Metro. At the same 
time we were looking at how to leverage efforts in the 
community in the construction of middleware to support 
distributed workspaces [4].  
 
These experiences made us realize that, while 
considerable commercial effort was being devoted to 



solving the desktop-to-desktop scenario, certain areas 
were still being ignored: (1) group-to-group 
collaborations among people at different institutions and 
(2) a way to integrate tools people use when meeting face 
to face. Video conferencing solutions with single cameras, 
click to talk, and a single microphone did not meet such 
needs. They were also not very engaging or natural 
environments.  
 
To address this situation, we initiated the Access Grid 
project [5]. Our objective was to design and build a 
deployable tool to enable groups of individuals at remote 
locations to collaborate and work as if they were 
collocated. The Access Grid is an open-source research 
project dedicated to enabling collaboration between 
groups of individuals, through the sharing of audio, 
video, text, and applications. The Access Grid represents 
a scalable solution for collaboration ranging from the 
desktop to room-size suites. The development of the 
Access Grid toolkit, which is now in version 3.1, 
represents significant experience in working with a large 
community of diverse users. The Access Grid currently 
supports over 2,000 users in over 50 different countries. 
Initial prototypes of integration of visualization 
infrastructure with the framework have been demonstrated 
over the past five years [6,7] and more recently in a 
production environment for the volumetric rendering of 
medical images [8]. In conjunction with this effort we 
have been planning and prototyping community-
accessible visualization solutions to simplify access to 
resources [9]. To date, collaboration technology has not 
advanced beyond the situation that was the impetus for 
the development of the Access Grid.  
 
3. COLLABORATION RETROFITTING  
 
Collaboration has long been an important element of 
scientific research; generally this has been a local 
collaboration in which collocated colleagues share 
scientific and computational resources. As collaborations 
become more distributed, it is essential that the capability 
continue. In many cases, however, the applications that 
scientists rely on are not collaborative and often are not 
even network-aware. These applications must be 
retrofitted for collaboration so that people in 
geographically distributed locations can use them and 
have a common sense of the workflow.  
 
3.1. Manual Retrofitting 
 
Multiple approaches to manual retrofitting have been 
pursued. Two common approaches are the use of remote 
screen buffers and implementation of collaborative 
facilities within the application. The most trivial is that 
of screen sharing à la virtual network computing (VNC), 
in which the content of the display is captured and 

transmitted to remote participants, from whom 
interactions can be captured and transmitted back to the 
source application.  The wide applicability of this 
solution is appealing, as it is largely application- and 
platform-independent. It does not, however, preserve any 
shared representation of the application state, essential to 
the continuing pursuits of the collaborative endeavor. 
VNC also faces well-known security and connectivity 
challenges. 
 
A second approach for equipping an application for 
collaboration is to implement this functionality directly 
in the application code. This approach has its merits, 
primary tight integration and full control of the 
application. We have used this approach in numerous 
instances, for example in writing stream-processing units 
for Chromium to stream-rendered frames as video. The 
downside of this approach is its labor-intensive nature, in 
that it requires not only design of novel collaborative 
facilities but also deep knowledge of the target application 
code. Having followed this approach in several instances, 
we have identified common facilities and patterns, 
clarifying the need for a collaboration toolkit. 
 
3.2. Retrofitting with a Collaboration Toolkit 
 
The Access Grid establishes a collaborative environment 
with audio, video, text chat, shared data, and shared 
applications. Beyond the typical user tools for 
collaboration, the Access Grid includes a toolkit for 
developing shared applications. The collaborative 
components of the toolkit are key to establishing and 
maintaining shared distributed state: a centralized store of 
shared application state and an event distribution service.  
The centralized application state consists of a memory-
resident keyword-value store. The storage interface itself 
places minimal constraints on the structure, content, and 
format of the data, instead leaving these decisions to the 
application.  
 
The event service is similar in its treatment of data:  it 
includes facilities for addressing and messaging, but 
regards the data payload as entirely opaque.  Performance 
was a key consideration in the design of the event service; 
using lightweight data formats, the event service is able 
to deliver messages between users distributed around the 
planet with minimal overhead. A further benefit of the 
event service is that it avoids firewall problems by relying 
strictly on outgoing connections from users. These 
facilities provide the underpinnings necessary for 
applications to be extended for collaboration. 
 
Implementing collaborative facilities in an existing 
application is significantly simplified when one need not 
be concerned with the format of data or means of 
distribution. In the next section, we give examples of 



standalone applications that have been extended with 
collaborative facilities using the application development 
components of the Access Grid.  
 
4. EXPERIENCE 
 
Collaboration can be divided into two functionally 
distinct layers: remote presentation and remote 
interaction.  Remote presentation involves simply sharing 
the content of one’s work with remote viewers, 
presumably with some out-of-band mechanism for 
discussing the content. This “half-duplex” interaction is 
often an acceptable level of collaboration in situations 
involving a single expert or localized data or application 
base and a group of remote “observers.” 
 
Remote interaction involves bidirectional or “full duplex” 
interaction, in which the remote collaborators can fully 
control the application being shared. This scenario is an 
extension of remote presentation in that when all 
collaborating participants have equal expertise with the 
application or data being presented, any one of them can 
take over and discuss the shared content. 
 
The following sections describe our experience with each 
of these mechanisms. 
 
4.1. Streaming ParaView-rendered Data 
 
ParaView is a widely used application for visualization of 
scientific datasets (Fig. 1). These datasets are often large 
and reside on remote data storage resources, with which 
the ParaView client interacts through a built-in client-
server mechanism, such that the server reads the data and 
renders it and the client simply displays it.  
Scientific visualization is typically undertaken by 
visualization experts operating on data that belongs to 
scientists. These two groups work together on the 
development of the visualization to ensure that it 
accurately represents the data, usually over a period of 
time proportionate to the size and complexity of the 
dataset. 
 
As research groups become increasingly distributed, these 
interactions must also become distributed. To model 
these interactions in a distributed environment, the 
visualization expert and scientist require a mechanism for 
reviewing intermediate visualization results and adjusting 
the space, time, and color representations from their home 
institutions. 
 
The first step in our solution is to allow the visualization 
expert to work in the usual fashion, in this case using 
ParaView, with an extension that streams the resulting 
visualization over the network as video to the remote 

scientists. The scientists run an application that can 
receive and display the incoming visualization data. The 
visualization frames are streamed by using a video codec 
that optimizes for bandwidth consumption by limiting 
the data it sends according to changes between frames 
(e.g., motion coding). This allows the stream to achieve 
a high frame rate and low latency, making it a convenient 
solution for collaborative visualization (Fig. 2). 
 
Used in conjunction with the Access Grid, which 
includes the application that receives and displays the 
incoming visualization video, the visualization expert and 
the scientist(s) can interact with each other and the 
visualization in a fashion similar to being in the same 
physical room. 
 
Subsequent development will focus on enabling the 
remote scientists to take control over ParaView and adjust 
the visualization, as over time the domain scientists will 
become more comfortable with the visualization tools and 
it will be more natural and faster for them to interact with 
the visualization themselves. 

 
4.2. Access Grid Shared Applications 
 
Here we give four examples of shared applications that 
have been built with the collaborative components 
provided by the Access Grid:  Shared Presentation, 
Shared Rasmol, Shared Gnuplot, and vl3. 
 
Shared Presentation is a tool for distributed control of 
slide presentations.  This application uses the data store 
for state, such as the location of the set of slides (e.g., a 
URL), the current slide number, and the identity of the 
presenter (for floor control). The event service is used to 

 
Figure 1. Screen capture of ParaView application 
being used to look at data from a simulation of blood 
flow within an artery. (Data provided by George 
Karniadakis - Brown University) 



communicate events such as the loading of a slide set, 
advancing to the next slide, and floor control changes. 
 
Rasmol is an application used by biologists for three-
dimensional visualization of molecular structure. We have 
built Shared Rasmol to allow biologists to 
collaboratively view molecular models from remote 
locations. Shared Rasmol opens model files from the 
Access Grid Venue datastore and tracks application 
interactions for rotating, panning, and zooming the model 
and changing the display of the model. These interactions 
are communicated to remote users where they are pumped 
into the receiving Rasmol instance to effect the same 
view. The interactions are communicated over the event 
service, which must bear the heavy load of frequent 
updates to the model position and transformation 
resulting from mouse interactions. 
 
Gnuplot has a long history in graphical viewing of 
scientific data by scientists in many domains. Shared 
Gnuplot accepts input from any member of a group of 
users and displays the resulting plot at all remote sites.  
As with other shared applications, this allows one user 
with expert knowledge in either the tool (Gnuplot) or the 
domain data to share his expertise with the group. 
 
The vl3 tool is a distributed, cluster-based volume 
visualization application with a collaborative frontend.  
The rendering engine is run on the cluster, and the user 
interface communicates changes in the view back to it for 
rendering updates. Discovery of the vl3 “session” occurs 
through the Access Grid Venue (as is typical of AG 
shared applications). When a user joins the vl3 session, 
the client launches against addresses stored in the shared 
application state, and interactions with the client 
propagate to remote collaborators over the Access Grid 
event service. 
 

4.3. Results 
 
The examples above describe two approaches to building 
collaborative applications: remote presentation and remote 
interaction.  A hybrid of these two approaches, best 
exemplified in the case of vl3, may be the best approach 
going forward. Streaming the relevant application interface 
to remote participants as video optimizes for presentation 
and bandwidth but precludes interaction. The Access Grid 
facilities used by the shared applications described above 
arose out of many instances of shared application 
development and provide the necessary support for remote 
interaction. 
 
5. FUTURE POSSIBILITIES 
 
Interesting environments can arise when one begins by 
considering collaboration instead of ending there. In this 
section we present three ideas for collaborative 
technologies. We think that they create collaborative 
experiences that are very different from what we have seen, 
even though they rely heavily on ideas that have been 
tried in part and in other forms. The three examples 
below illustrate powerful collaborative capabilities 
available to all applications in conventional personal 
computing environments. 
 
5.1. The Vast Pixel Savannah 
 
How can we share what we are seeing on our display 
screens in a simple and fluid way? This question lies at 
the heart of collaborative visualization. 
 
The need for a new paradigm in handling pixels is being 
expressed in several areas of ongoing work. At the more 
traditional end of the scale are the solutions that consider 
end-point displays as containing graphics horsepower 
according to the usual workstation standards. Multi-
display systems using WireGL, Chromium, DMG, and 

    

Figure 2. Photos of users participating in collaborative ParaView session; the user sitting at his desk is sharing 
the visualization results with two colleagues at a different location. 

 



 
Figure 3. The Vast Pixel Savannah, a universally 
shared persistent visual space.  

similar solutions are of this ilk. A central problem for 
architectures based on this paradigm is that operating 
system integration with the display adaptor has evolved 
to provide powerful graphics pipelines from application to 
pixels that are difficult to break into. At the other end of 
the scale, solutions that put pixels in the prime position 
(as opposed to graphics primitives) are providing perhaps 
the most flexible and neutral paradigm, typically at the 
expense of performance. SAGE, VNC, and the many 
progeny of VNC are among the approaches that fit into 
this category. The venerable and ancient X lies between 
these extremes. 
 
With the vast pixel savannah (VPS), we consider a model 
where pixels are primary—shipped à la carte across the 
network—and introduce the notion of a global address 
space for pixels that is accessible to all display devices. 
Shown in Figure 3 is an example of two conventional 
work planes, a laptop and a dual headed workstation, that 
are making use of two windows onto the VPS. Each is 
windowed onto more or less permanent homestead plots, 
which in this case are temporarily connected via a bridge 
(labeled wormhole) to facilitate passing windows. Each is 
additionally windowed onto a larger shared pixel plot 
(labeled playground) that might be the target of a large 
visualization that these two collaborators are exploring. 
Thrown in for the purpose of illustration are plots in the 
VPS corresponding to the display of a cell phone and a 
public digital billboard 
. Pixel real estate might be apportioned by using DNS-
like services over the Internet. Every display device that 
adopts this model would face many of the same 
administrative questions that it faces with respect to 
network address: where to begin, if and when to change 
the position of its view onto the VPS, who to ask if it 
doesn’t know what to do, and what coordinates are legal. 
 
Taking this view of display space would enable many 
useful possibilities. One’s display becomes a window 
onto this terrain.  One may own a private plot, or pixel 
homestead.  Bridges between regions create expedient 
new relationships by manipulating the topology of the 
VPS. An extreme interpretation of the VPS that may 
open its use to new and interesting possibilities is as a 
kind of collaborative terrain along the lines of Second 
Life. 
 
5.2. Pixel Porting 
 
Sometimes collaboration is best served by sharing only a 
small piece of a visual representation right now and 
without any prior warning. The barrier to such 
impromptu visual collaborations is too high for most 
people's taste, and so it rarely contributes to the 
collaborative workflow. 
 

Standing between collaborators and a fluid flow of shared 
visual experience are a host of issues including non-
uniform interfaces to applications, computing platform 
differences, the semantics of the desktop metaphor, and 
the mechanics of keyboard and mouse.  Issues of personal 
preference also play a key role in this problem.  One can 
see instances in existing applications and modes of 
human-computer-human interaction that capture useful 
styles. Instant messaging has many properties that could 
aid us here, the spontaneity afforded by an open channel 
and its lightweight interface among them. Keyboard 
shortcut tools (Quicksilver comes instantly to mind) can 
be extremely powerful; though can present a bewildering 
if not daunting array of magical keystrokes that is off-
putting to many. Direct selection of pixels from the user's 
field of view is an exceptionally useful tool because it has 
the power to represent exactly what interests while 
skipping over the encumbrances of the desktop metaphor 
– focus is on the flat visual imagery. 
 
We believe that a useful tool capable of promoting 
frictionless sharing of visual data can be constructed out of 
the best aspects of these many components. Here is a 
sketch of what we envision, in the form of a use case.  
 
You see something interesting on your screen that you 
would like to share with a collaborator. You hold the 
Ctrl-Option meta-keys while dragging a selection box 
over the area of your screen that contains the important 
content. The highlighted region (a pixel portal) can then 
be dragged onto your IM client where it resolves to an 
existing conversation or creates a new one as 
circumstances dictate. In Figure 4, the provider on the 
right (you) can resize or move using corner handles. The 
widget bar below the portal window contains selectors for 
still, new snap, continuous, and remote control. The 
widget bar below the destination port (mine), if enabled 
by the provider, allows the subscriber to steer the pixel 
portal’s mouth end around the window or screen on the 
provider’s laptop. Decorating the conversation now is an 
active region with the contents of the selected pixel 



 
Figure 4. Sketch of a pixel port connection. 

portal; it can be a snapshot of the contents at the moment 
of selection or, at your option, a constantly updated 
image mirroring your selection. At any time you can 
resize or move the pixel portal with instantaneous effect 
on what your collaborator sees. You may allow your 
collaborator to steer.  Pixel portals can be managed by a 
mechanism parallel to the ubiquitous clipboard, or they 
can be redirected to other or additional collaborators.  
With this notion in place, many potentially useful 
embellishments are possible. 
 
5.3. IM Everywhere 
 
As our research workflows become increasingly complex 
and intertwined, not only with our human collaborators, 
but also with the range of computing processes that 
facilitate all aspects of our daily chores, there is increasing 
need for human-centered approaches in order to relieve the 
mental overhead that attends this complexity. 
 
Perhaps it is opportune to start thinking about broadening 
the sphere of influence of collaboration research to include 
the non-human partners in our work. Human-centered 
approaches to computing are increasingly feasible as 
technologies in natural languages, agents, security, 
ubiquitous computing, and grid-computing (to name a 
few) are advanced and integrated into our common 
computing fabric. 
 
The idea embodied in IM Everywhere is to deploy our 
agents behind the natural interface provided by the IM 
client. By packaging our computing aids as agents and 
wrapping them in the conversational interface we use for 
our human collaborations we reduce the number of 
different command and control modes that we are required 
to master, reduce the number and depth of context 
switches required to manage our multi-tasking, and begin 
an evolutionary process that will ultimately enable us to 
focus more exclusively on our research problems and less 
on the problems created by the technologies we hurl at 
our research problems. 
 
 

6. CONCLUSIONS 
 
Current collaborative infrastructure available today is not 
enough; we need collaborative services that integrate with 
scientific workflow and data management systems. 
Systems must support and promote remote and 
collaborative visualization and have algorithm and 
infrastructure optimizations to make them usable and 
robust. Collaboration technologies available today largely 
target videoconferencing, webcasting, or shared 
whiteboard technologies and are expensive, closed 
systems often using proprietary protocols.  
 
We advocate an approach that is based on open source 
infrastructure designed for easy integration into a wide 
variety of applications and environments. With this 
approach, even simple ideas could provide powerful new 
modes of collaboration that fit invisibly into the working 
environment and style of the research scientist. We have 
described three separate ideas that fit this model: (1) the 
Vast Pixel Savannah –the collaborative potential is built 
into the underlying abstractions applying to our display 
surfaces, (2) Pixel Porting – relies on a ubiquitous tool 
that lives side-by-side with any application, and (3) IM 
Everywhere – conveys collaborator status to even our 
most mundane of information sources by wrapping them 
in agent technology and opening an instant messaging 
channel to them.  These are probably not the only 
options, but they are all designed into the working fabric 
of our computing environments well below (or outside of) 
the imaginary box containing an application. This 
property endows them with the power of independence 
making them always available. 
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